首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40165篇
  免费   3644篇
  国内免费   1889篇
工业技术   45698篇
  2024年   97篇
  2023年   568篇
  2022年   811篇
  2021年   1355篇
  2020年   1089篇
  2019年   985篇
  2018年   1067篇
  2017年   1102篇
  2016年   1057篇
  2015年   1503篇
  2014年   1771篇
  2013年   2099篇
  2012年   2415篇
  2011年   2558篇
  2010年   2364篇
  2009年   2414篇
  2008年   2246篇
  2007年   2148篇
  2006年   2316篇
  2005年   1924篇
  2004年   1496篇
  2003年   1681篇
  2002年   2047篇
  2001年   1749篇
  2000年   1201篇
  1999年   1140篇
  1998年   830篇
  1997年   701篇
  1996年   660篇
  1995年   551篇
  1994年   411篇
  1993年   337篇
  1992年   257篇
  1991年   178篇
  1990年   146篇
  1989年   106篇
  1988年   106篇
  1987年   56篇
  1986年   29篇
  1985年   32篇
  1984年   18篇
  1983年   15篇
  1982年   19篇
  1981年   10篇
  1980年   17篇
  1979年   7篇
  1978年   3篇
  1974年   1篇
  1961年   1篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The purpose of this study was to increase the water solubility and potential bioavailability of quercetin by encapsulation in whey protein isolate (WPI) based on a green, efficient pH-driven method. According to the results, the water solubility of quercetin increased by 346.9: times after loading into WPI nanoparticles. When the initial quercetin concentration was 0.25 mg mL−1 and WPI was 2% w/v, the encapsulation efficiency reached 94.1%, the Z-average diameter was 36.63 nm, and the zeta potential was −36.4 mV at pH 7.0. The fluorescence spectroscopy assay suggested the molecular complexation of quercetin and WPI at pH 12.0. X-ray diffraction assay indicated the enclosure of amorphous quercetin in WPI. Correspondingly, the bioaccessibility increased from 2.76% to 31.23% and the Caco-2 cell monolayer uptake increased from 0% to 2.12% after nanoencapsulation. This work confirmed that the pH-driven method is an effective approach to prepare WPI–quercetin nanocapsules to improve physical and potentially biological properties of quercetin.  相似文献   
2.
瞿中  谢钇 《计算机科学》2021,48(4):187-191
针对现有的混凝土裂缝检测算法在各种复杂环境中检测精度不够、鲁棒性不强的问题,根据深度学习理论和U-net模型,提出一种全U型网络的裂缝检测算法。首先,依照原U-net模型路线构建网络;然后,在每个池化层后都进行一次上采样,恢复其在池化层之前的特征图规格,并将其与池化之前的卷积层进行融合,将融合之后的特征图作为新的融合层与原U-net网络上采样之后的网络层进行融合;最后,为了验证算法的有效性,在测试集中进行实验。结果表明,所提算法的平均精确率可达到83.48%,召回率为85.08%,F1为84.11%,相较于原U-net分别提升了1.48%,4.68%和3.29%,在复杂环境中也能提取完整裂缝,保证了裂缝检测的鲁棒性。  相似文献   
3.
The development of efficient and stable oxygen evolution reaction (OER) catalysts is an ongoing challenge. In order to solve the problem of low oxygen evolution efficiency of the current OER catalysts, a novel material was synthesized by the incorporation of NiFeCr-LDH and MoS2, and its structural and electrochemical properties were also investigated. The introduction of MoS2 improves the electrochemical performance of NiFeCr-LDH. The polarization curve shows that the potential of composite material is only 1.50 V at a current density of 10 mA cm?2, which is far superior to commercial precious metal catalysts. In addition, the stability experiment shows that the composite material has excellent stability, and the current density has little change after 500 cycles. Furthermore, we found that some metal ions, such as Ni, Cr and Mo, exist in the form of high valence on the surface of NiFeCr-LDH@MoS2, which is also conducive to the occurrence of oxygen evolution reaction.  相似文献   
4.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
5.
6.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
7.
Ti-based amorphous metallic glasses have excellent mechanical, physical, and chemical properties, which is an important development direction and research hotspot of metal composite reinforcement. As a stable, simple, efficient, and large-scale preparation technology of metallic powders, the gas atomization process provides an effective way of preparing amorphous metallic glasses. In this study, the controllable fabrication of a Ti-based amorphous powder, with high efficiency, has been realized by using gas atomization. The scanning electron microscope, energy-dispersive spectrometer, and X-ray diffraction are used to analyze surface morphology, element distribution, and phase structure, respectively. A microhardness tester is used to measure the mechanical property. An electrochemical workstation is used to characterize corrosion behavior. The results show that as-prepared microparticles are more uniform and exhibit good amorphous characteristics. The mechanical test shows that the hardness of amorphous powder is significantly increased as compared with that before preparation, which has the prospect of being an important part of engineering reinforced materials. Further electrochemical measurement shows that the corrosion resistance of the as-prepared sample is also significantly improved. This study has laid a solid foundation for expanding applications of Ti-based metallic glasses, especially in heavy-duty and corrosive domains.  相似文献   
8.
A novel carbon/m-HNTs composite aerogel was synthesized by introducing the modified halloysite nanotubes (m-HNTs) into phenolic (PR) aerogels through chemical grafting, followed with carbonization treatment. In order to explore the best proportion of HNTs to phenolic, the micromorphology of PR/m-HNTs were investigated by SEM before carbonization, confirming 10 wt% of m-HNTs is most beneficial to the porous network of aerogels. The interaction between PR and HNTs was studied by FTIR spectra, and microstructure evolution of the target product-carbon/m-HNTs composite aerogel were illustrated by SEM and TEM techniques. SEM patterns indicated that the carbon/m-HNTs aerogels maintain a stable porous structure at 1000 °C (carbonization temperature), while a ~20 nm carbon layer was formed around m-HNTs generating an integral unit through TEM analysis. Specific surface area and pore size distribution of composite aerogels were analyzed based on mercury intrusion porosimetry and N2 adsorption–desorption method, the obtained results stayed around 500 m2g?1 and 1.00 cm3g?1 (pore volume) without significant discrepancy, compared with pure aerogel, showing the uniformity of pore size. The weight loss rate (26.76%) decreased greatly compared with pure aerogel, at the same time, the best volumetric shrinkage rate was only 30.83%, contributed by the existence of HNTs supporting the neighbor structure to avoid over-shrinking. The highest compressive strength reached to 4.43 MPa, while the data of pure aerogel was only 1.52 MPa, demonstrating the excellent mechanical property of carbon/m-HNTs aerogels.  相似文献   
9.
Peng  Jing  Yu  Lei  Zhong  Xiang  Dong  Tiansong 《Water Resources Management》2022,36(3):1043-1055
Water Resources Management - The low impact development (LID) concept aims to control storm runoff and pollution through decentralized, small-scale source control to bring the development area as...  相似文献   
10.
Crosslinking of polyolefin elastomer (POE, ENGAGE™ 8480) with Dicumyl Peroxide (DCP) can have effects on its crystallization dynamics, crystal structure, and properties. The POE crosslinked uniformly has significantly lower crystalline ability than the one with only amorphous phase crosslinked, which, in turn, has weaker crystalline ability than neat POE. The crystallinity and melting point depend on how the POE is crosslinked. The neat POE and POE crosslinked in amorphous phase only, are investigated with DSC and in-situ tensile/synchrotron radiation (WAXD/SAXS). In situ tensile/synchrotron X-ray during a uniaxial stretching process indicates that severe crystal fragmentation is observed at a strain around 45%, and with further increase in strain. The stress in the crosslinked POE is significantly larger than neat POE. For both samples, crystal orientation increases sharply within the strain range up to 88% where orientation-induced new crystals aligned in stretching direction are observed. The long period increases more in stretching direction for the crosslinked POE, consistent with larger stress in this sample, and the stress difference is more pronounced at large strains (27.3 vs. 10.9 MPa at a strain 435%). Permanent set of the crosslinked POE is smaller, consistent with less oriented crystals observed after the test for permanent set.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号